Linee di trasmissione: teoria, esercizi e dintorni

Appunti delle lezioni di Campi Elettromagnetici A.A. 2001/2002

A. Freni

Facolta' di Ingegneria, Universita' degli Studi di Firenze, 6 giugno 2002

La presente dispensa rispecchia parte delle lezioni con cui ho annoiato i numerosi studenti che hanno seguito il corso di Campi Elettromagnetici da me tenuto nell'A.A. 2001/2002 presso la Facolta' di Ingegneria dell'Universita' degli Studi di Firenze. Essa e' stata scritta con la sola intenzione di fornire allo studente un aiuto per la preparazione dell'esame e quindi non ha la pretesa di essere un testo completo e rigoroso. Si suggerisce percio' al lettore di approfondire gli argomenti sui testi qui di seguito elencati che costituiscono anche la bibliografia della dispensa:

R. E. Collin, *Foundation for microwave engineering*, McGraw-Hill, London, 1966.

R. E. Collin, Field Theory of Guided Waves, IEEE Press, New York, 1991.

J. D. Kraus, *Electromagnetics*, McGraw-Hill, London, 1984.

G. Franceschetti, Campi elettromagnetici, Boringhieri, Torino, 1988.

G. Franceschetti, *Lezioni di campi elettromagnetici e circuiti*, L. & D. Pironti, Napoli, 1976.

D. M. Pozar, *Microwave Engineering*, Addison-Wesley Publishing Company, New York, 1990.

N. N. Rao, *Elements of engineering electromagnetics*, Prentice-Hall, Inc., Upper Saddle River, New Jersey, 2000.

Si esprime inoltre un particolare ringraziamento alla Sig.ina Mayazzurra Ruggiano per l'attenta e competente opera di revisione eseguita a tempo di record.

Tutti i diritti sono riservati. Nessuna parte del presente libro puo' essere riprodotta sotto ogni forma e con qualsiasi mezzo senza permesso scritto dell'autore. ISBN 0-13-013201-2

Indice

1	Line	Linee di Trasmissione				
	1.1	Propagazione in una linea di trasmissione	6			
	1.2	Analisi di una linea di trasmissione chiusa su un generico carico	16			
	1.3	Potenza in una linea di trasmissione				
	1.4	.4 Comportamento di una linea per particolari valori del carico				
		1.4.1 Linea chiusa sulla propria impedenza caratteristica	21			
		1.4.2 Linea chiusa in corto circuito	24			
		1.4.3 Linea aperta	28			
		1.4.4 Linea chiusa su un carico reattivo	33			
		1.4.5 Linea chiusa su un generico carico Z_u	33			
	1.5	Rapporto d'onda stazionaria	36			
2 Linee con perdite		ee con perdite	43			
	2.1	Valutazione della conduttanza e della resistenza per unita' di				
		lunghezza di una linea	43			
	2.2	Linee con piccole perdite	46			
	2.3	Linea con piccole per dite chiusa su un generico carico $\ . \ . \ .$	50			
3	La carta di Smith					
	3.1	Costruzione della carta di Smith	55			
	3.2	Carta di Smith letta in termini di ammettenza	65			
4	Il p	roblema dell'adattamento	73			
	4.1 Adattamento tramite trasformatore in quarto					
		d'onda \ldots	77			
	4.2	Considerazioni sull'uso di un trasformatore				
		in quarto d'onda	81			
	4.3	Analisi di un trasformatore in quarto d'onda tramite riflessioni				
		multiple	82			
	4.4	Adattamento tramite stub parallelo	85			
	4.5	Adattamento tramite doppio stub	95			

5	App	olicazioni della teoria delle linee di trasmissione	99
	5.1	Analogia onda piana/linea di trasmissione	99
	5.2	Analogia onda piana/linea di trasmissione: incidenza ortogonale	100
	5.3	Analogia onda piana/linea di trasmissione: incidenza obliqua .	104
		5.3.1 Polarizzazione perpendicolare (caso TE_z)	105
		5.3.2 Polarizzazione parallela (caso TM_z)	110
	5.4	Il problema di N linee in cascata	113
	5.5	Teoria delle piccole riflessioni	116

4

Capitolo 1

Linee di Trasmissione

Si consideri una struttura costituita da due o piu' superfici cilindriche indefinite realizzate mediante un buon conduttore e si supponga che tali conduttori siano immersi in un mezzo omogeneo ed isotropo.

Sia $\Sigma(x, y, z)$ un sistema di coordinate cartesiano con asse z parallelo alle generatrici delle superfici cilindriche (Fig. 1.1). In tale tipo di struttura, che generalmente prende il nome di linea di trasmissione, si puo' avere, in funzione della frequenza di lavoro, la propagazione di un campo elettromagnetico secondo piu' configurazioni o modi. Tra questi, il modo trasverso elettromagnetico (TEM), per cui le componenti di campo longitudinale risultano assenti ($E_z = H_z = 0$), risulta certamente il principale. Infatti per tale configurazione si ha la propagazione di tutte le componenti di frequenza del segnale ed e' possibile determinare univocamente tensione e corrente lungo i due o piu' conduttori.

In seguito, se non espressamente specificato, considereremo sempre che nella linea si propaghi il solo modo TEM.

Figura 1.1: Esempi di linea di trasmissione.

Figura 1.2: Schematizzazione di una linea di trasmissione chiusa su un carico Z_u e alimentata da un generatore avente impedenza interna Z_q .

Le equazioni cui obbediscono tensione e corrente lungo la linea possono essere ricavate in modo rigoroso risolvendo le equazioni di Maxwell soggette a specifiche condizioni al contorno per la particolare struttura in esame. Tuttavia esse possono essere anche ricavate mediante un semplice approccio di tipo circuitale: approccio che cronologicamente ha costituito il primo metodo per lo studio delle linee di trasmissione.

1.1 Propagazione in una linea di trasmissione

Si consideri la generica linea descritta in Fig. 1.2 chiusa su un carico di impedenza Z_u ed alimentata da un generatore di tensione V_g di impedenza interna Z_g . Si prenda ora in esame un tratto di linea dz molto corto, in modo tale da poter applicare le normali tecniche dei circuiti a costanti concentrate. In tal caso il tratto di linea dz puo' essere schematizzato come rappresentato in Fig. 1.3, dove le quantita' C, L, R, G sono chiamate costanti primarie della linea e sono rispettivamente:

- C-capacita' per unita' di lunghezza [F/m] (tiene conto dei fenomeni capacitivi tra i due conduttori);
- L-coefficiente di autoinduzione [H/m] (tiene conto dei fenomeni di autoinduzione dei conduttori);
- R-resistenza per unita' di lunghezza $[\Omega/m]$ (tiene conto delle perdite ohmiche nei conduttori);

Figura 1.3: Circuito equivalente di un tratto dz infinitesimo di linea.

• G-conduttanza per unita' di lunghezza $[\Omega^{-1}/m]$ (tiene conto delle perdite dovute all'isteresi ed alla conducibilita' residua nel mezzo in cui sono immersi i conduttori cosi' come delle eventuali perdite per radiazione della linea).

Se le costanti primarie risultano costanti lungo la linea, questa e' detta uniforme. Nello specifico caso, verranno in seguito analizzate solo linee uniformi.

Analizzando il circuito equivalente di un tratto infinitesimo di linea nel dominio della frequenza, si puo' scrivere:

$$V(z) = V(z+dz) - I(z+dz) \left(R+j\omega L\right) dz, \qquad (1.1)$$

$$I(z) = I(z + dz) - V(z) (G + j\omega C) dz, \qquad (1.2)$$

da cui, per $dz \to 0$,

$$\frac{V(z+dz) - V(z)}{dz} = \frac{dV(z)}{dz} = (R+j\omega L) I(z+dz),$$
(1.3)

$$\frac{I(z+dz) - I(z)}{dz} = \frac{dI(z)}{dz} = (G+j\omega C) V(z).$$
(1.4)

Definendo $L_{eq} = L - jR/\omega, C_{eq} = C - jG/\omega$ si ottiene

$$\frac{dV(z)}{dz} = j\omega L_{eq}I(z+dz), \qquad (1.5)$$

$$\frac{dI(z)}{dz} = j\omega C_{eq} V(z) \,. \tag{1.6}$$

		h 			
$L = \frac{\mu_0}{\pi \operatorname{arccosh}(d/2a)}$	$L = \frac{\mu_0}{2\pi} \ln(b/a)$	$L \simeq \frac{\mu_0 h}{w}, \ w \gg h$			
$C = \pi \varepsilon_1 \operatorname{arccosh}(d/2a)$	$C = \frac{2\pi\varepsilon_1}{\ln(b/a)}$	$C \simeq \frac{\varepsilon_1 w}{h}, \ w \gg h$			
$R = \frac{1}{a} \sqrt{\frac{\mu_0 f}{\pi \sigma}}$	$R = \frac{a+b}{2ab} \sqrt{\frac{\mu_0 f}{\pi \sigma}}$	$R = \frac{2}{w} \sqrt{\frac{\mu_0 f}{\pi \sigma}}$			
$G \simeq 2\pi f C \tan \gamma$	$G \simeq 2\pi f C \tan \gamma$	$G \simeq 2\pi f C \tan \gamma$			
dove: $\varepsilon = \varepsilon_1 - j\varepsilon_2$, $\tan \gamma = \frac{\varepsilon_2 + \sigma/\omega}{\varepsilon_1}$					

Tabella 1.1: Costanti primarie per alcune linee di trasmissione di uso comune.

Potendo esprimere

$$I(z+dz) = I(z) + \frac{dI(z)}{dz}dz, \qquad (1.7)$$

la prima equazione puo' essere riscritta nella forma

$$\frac{dV(z)}{dz} = j\omega L_{eq}I(z) + j\omega L_{eq}\frac{dI(z)}{dz}dz.$$
(1.8)

Avendo supposto la linea uniforme, non potranno essere presenti su di essa brusche variazioni della corrente, per cui la derivata della corrente assumera' valori finiti ed il secondo termine a secondo membro risultera' trascurabile rispetto al primo. Pertanto le equazioni differenziali che descriveranno l'andamento di tensione e corrente lungo la linea risulteranno le seguenti:

$$\frac{dV(z)}{dz} = j\omega L_{eq}I(z), \qquad (1.9)$$

$$\frac{dI(z)}{dz} = j\omega C_{eq}V(z). \qquad (1.10)$$

Derivando quindi la prima equazione differenziale rispetto alla variabile z e facendo uso della seconda, si perviene ad una equazione differenziale in cui

compare la sola tensione

$$\frac{d^2 V(z)}{dz^2} + \omega^2 L_{eq} C_{eq} V(z) = 0.$$
(1.11)

Analogamente, derivando la seconda equazione differenziale rispetto alla variabile z, tramite la prima, si perviene ad una equazione differenziale in cui compare la sola corrente

$$\frac{d^2 I(z)}{dz^2} + \omega^2 L_{eq} C_{eq} I(z) = 0.$$
(1.12)

E' conveniente definire costante di propagazione k la quantita' $k^2 = \omega^2 L_{eq} C_{eq}$, per cui le due equazioni differenziali appena scritte assumono la forma

$$\frac{d^2 V(z)}{dz^2} + k^2 V(z) = 0, \qquad (1.13)$$

$$\frac{d^2 I(z)}{dz^2} + k^2 I(z) = 0.$$
(1.14)

Tali equazioni differenziali risultano del secondo ordine, lineari, omogenee, a coefficienti costanti, inoltre sono formalmente uguali ed hanno soluzioni generali:

$$V(z) = V_{+} \exp(jkz) + V_{-} \exp(-jkz), \qquad (1.15)$$

$$I(z) = I_{+} \exp(jkz) + I_{-} \exp(-jkz), \qquad (1.16)$$

dove le costanti complesse V_+ , V_- , I_+ , I_- dovranno essere determinate in base alle condizioni al contorno (una volta cioe' specificato il carico ed il generatore).

Si noti come la costante di propagazione sia in generale una quantita' complessa

$$k = \omega \sqrt{L_{eq}C_{eq}} = \beta - j\alpha \in \mathbb{C}, \qquad (1.17)$$

dove $\beta > 0$ e' detta costante di fase mentre $\alpha \ge 0$ costante di attenuazione.

Nel caso in cui non siano presenti perdite, cioe' R = G = 0, la costante di propagazione risulta puramente reale e pari alla costante di fase

$$k = \omega \sqrt{LC} = \beta \in \mathbb{R}^+.$$
(1.18)

A questo punto e' utile esaminare le soluzioni generali della propagazione lungo la linea ed in particolare quella dell'andamento della tensione:

$$V(z) = V_{+} \exp(jkz) + V_{-} \exp(-jkz).$$
(1.19)

Sara' nostro compito dimostrare che il termine $V_+ \exp(jkz)$ rappresenta una onda di tensione che si propaga dal generatore verso il carico (onda diretta) mentre il termine $V_- \exp(-jkz)$ rappresenta un'onda che si propaga dal carico verso il generatore (onda riflessa).

Per verificare cio' e' comunque necessario esaminare l'andamento della tensione nel dominio del tempo: si consideri quindi la sola onda diretta e si operi la trasformata inversa di Fourier

$$v_{+}(z,t) = \mathcal{F}^{-1} \left[V_{+}(\omega) \exp[jk(\omega)z] \right] =$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} V_{+}(\omega) \exp[jk(\omega)z] \exp(j\omega t) d\omega . \quad (1.20)$$

Poiche' la tensione sulla linea $v_+(z,t)$ e' una quantita' reale, per ogni ascissa z, dovra' essere verificata la condizione:

$$V_{+}(-\omega)\exp[jk(-\omega)z] = \left(V_{+}(\omega)\exp[jk(\omega)z]\right)^{*}, \qquad (1.21)$$

dove l'operatore * indica il complesso coniugato. Essendo il segnale in ingresso alla linea reale, lo spettro dell'ampiezza dell'onda diretta godra' della seguente proprieta'

$$V_{+}(-\omega) = V_{+}^{*}(\omega),$$
 (1.22)

per cui la precedente condizione equivale a richiedere

$$k(\omega) = -k^*(\omega), \qquad (1.23)$$

od equivalentemente, in termini di costante di fase e di attenuazione,

$$\beta(-\omega) = -\beta(\omega), \qquad \alpha(-\omega) = \alpha(\omega).$$
 (1.24)

Si supponga che il mezzo sia non dispersivo, cioe' che $\chi = \beta/\omega$ risulti una costante rispetto alla pulsazione ω , ed inoltre che anche la costante di attenuazione α risulti costante rispetto alla pulsazione ω .

In tali ipotesi,

$$v_{+}(z,t) = \exp(\alpha z) \frac{1}{2\pi} \int_{-\infty}^{+\infty} V_{+}(\omega) \exp(j\omega\chi z) \exp(j\omega t) d\omega , \qquad (1.25)$$

da cui, ricordando la proprieta' di traslazione temporale della trasformata di Fourier, per cui

$$\mathcal{F}^{-1}[G(\omega)\exp(j\omega\tau)] = g(t+\tau)$$
(1.26)

Figura 1.4: Andamento lungo la linea dell'onda di tensione per due istanti successivi ($\alpha = 0$).

dove $g(t) = \mathcal{F}^{-1}[G(\omega)]$, si avra':

$$v_{+}(z,t) = \mathcal{F}^{-1}\left[V_{+}(\omega)\exp(j\omega\chi z)\right]\exp(\alpha z) = \widetilde{v}_{+}(t+\chi z)\exp(\alpha z), \quad (1.27)$$

dove $\widetilde{v}_+(t) = \mathcal{F}^{-1}[V_+(\omega)].$

Si noti che esitono valori temporali e spaziali in cui la funzione $\tilde{v}_+(x)$ assume sempre lo stesso valore. Infatti, incrementando opportunamente i valori della coordinata z e del tempo t, rispettivamente di Δz e Δt , si potra' avere

$$\widetilde{v}_{+}(t + \chi z) = \widetilde{v}_{+}(t + \Delta t + \chi [z + \Delta z]). \qquad (1.28)$$

Cio' si verifichera' qualora gli argomenti della funzione $\tilde{v}_+(\cdot)$ risultano uguali, cioe' quando

$$t + \chi z = t + \Delta t + \chi z + \chi \Delta z, \qquad (1.29)$$

e quindi

$$\frac{\Delta z}{\Delta t} = -\frac{1}{\chi} = -\frac{\omega}{\beta} = -v_f.$$
(1.30)

La quantita' $v_f = \frac{\omega}{\beta}$ ha dimensioni di una velocita' ed e' definita *velocita' di* fase. Nel caso in cui non sia presente alcuna perdita ($\alpha = 0$) tale velocita' di fase risulta quella con cui l'onda diretta di tensione trasla dal generatore verso il carico (verso negativo della coordinata z) come mostrato in Fig. 1.4.

Figura 1.5: Diagramma di Brilluin.

Analogamente per l'onda riflessa

$$v_{-}(z,t) = \mathcal{F}^{-1}\left[V_{-}(\omega)\exp(j\omega z/v_{f})\right]\exp(\alpha z) = \widetilde{v}_{-}(t-z/v_{f})\exp(-\alpha z),$$
(1.31)

per cui l'onda riflessa traslera' sempre con velocita' v_f ma dal carico verso il generatore (verso positivo della coordinata z).

Nel caso in cui siano invece presenti delle perdite ($\alpha \neq 0$) l'onda diretta e/o riflessa trasleranno ancora con velocita' v_f ma nel loro propagarsi si attenueranno esponenzialmente essendo ora presente il termine $\exp(\pm \alpha z)$.

Consideriamo il caso in cui il mezzo sia privo di perdite ($\alpha = 0$) ma dispersivo: in tal caso la costante di fase $\beta(\omega)$ risultera' una funzione non lineare della pulsazione ω (Fig. 1.5). Nella maggior parte delle applicazioni il suo andamento in funzione della pulsazione ω e' tuttavia generalmente linearizzabile nella banda di frequenza in cui l'ampiezza del segnale e' ancora apprezzabile.

Sia $V(\omega) = V_s(\omega) + V_d(\omega)$ lo spettro del segnale reale $\tilde{v}(t)$ in ingresso alla linea, dove

$$V_s(\omega) = V(\omega)U(-\omega), \qquad V_d(\omega) = V(\omega)U(\omega), \qquad (1.32)$$

con $U(\omega)$ funzione gradino unitario di Heaviside $(U(\omega) = 0 \text{ per } \omega < 0, U(\omega) = 1 \text{ per } \omega \ge 0)$, e gli spettri destro $V_d(\omega)$ e sinistro $V_s(\omega)$ siano centrati rispettivamente su $\omega_0 e -\omega_0$ (Fig. 1.6).

Si consideri il caso in cui sia presente la sola onda diretta, cioe' $V_+(\omega) = V(\omega)$, e se ne operi la trasformata inversa di Fourier. Poiche' il segnale

Figura 1.6: Spettro del segnale all'ingresso della linea.

applicato alla linea e' una funzione reale esso sara' rappresentabile come

$$v_{+}(z,t) = \mathcal{F}^{-1} \left[V_{+}(\omega) \exp(j\beta z) \right] = \mathcal{F}^{-1} \left[V(\omega) \exp(j\beta z) \right] =$$
$$= 2\mathcal{R}e \left\{ \frac{1}{2\pi} \int_{0}^{+\infty} \left[V(\omega) \exp(j\beta z) \right] \exp(j\omega t) d\omega \right\}. \quad (1.33)$$

A questo punto si sviluppi in serie di potenze la costante di fase $\beta(\omega)$ nell'intorno della frequenza centrale ω_0

$$\beta(\omega) = \beta(\omega_0) + \beta'(\omega_0)(\omega - \omega_0) + \frac{1}{2}\beta''(\omega_0)(\omega - \omega_0)^2 + O(\omega - \omega_0)^2, \quad (1.34)$$

dove

$$\beta'(\omega_0) = \left. \frac{d\beta(\omega)}{d\omega} \right|_{\omega=\omega_0} , \qquad \beta''(\omega_0) = \left. \frac{d^2\beta(\omega)}{d\omega^2} \right|_{\omega=\omega_0} . \tag{1.35}$$

Nell'ipotesi precedentemente introdotta, in cui l'andamento della costante di fase $\beta(\omega)$ risulta pressoche' lineare nella banda di frequenza nella quale $|V_d(\omega)| > 0$, e' possibile trascurare, nello sviluppo, i termini superiori al primo ordine. In tal caso si avra':

$$v_{+}(z,t) \simeq 2\mathcal{R}e\left\{\frac{1}{2\pi}\int_{0}^{+\infty}V_{d}(\omega)\exp[j\beta(\omega_{0})z]\exp[j\beta'(\omega_{0})z(\omega-\omega_{0})]\exp[j\omega t]d\omega\right\},$$
(1.36)

e, moltiplicando e dividendo l'integrando per la quantita' $\exp(j\omega_0 t)$, risultera'

$$v_{+}(z,t) = 2\mathcal{R}e\left\{\exp\left[j\left(\beta(\omega_{0})z + \omega_{0}t\right)\right] \cdot \frac{1}{2\pi}\int_{0}^{+\infty}V_{d}(\omega)\exp\left[j\left(\omega - \omega_{0}\right)\left(\beta'(\omega_{0})z + t\right)\right]d\omega\right\}.$$
 (1.37)

Lo spettro complesso $V_d(\omega)$ e' non nullo solo nell'intervallo $(\omega_0 - \Delta \omega, \omega_0 + \Delta \omega)$, per cui, operando il cambiamento di variabile $x = \omega - \omega_0$:

$$v_{+}(z,t) = 2\mathcal{R}e\left\{\exp\left[j\left(\beta(\omega_{0})z + \omega_{0}t\right)\right] \cdot \left(\frac{1}{2\pi}\int_{-\Delta\omega}^{+\Delta\omega}V_{d}(x+\omega_{0})\exp\left[jx\left(\beta'(\omega_{0})z+t\right)\right]dx\right\} = (1.38)$$

$$= 2\mathcal{R}e\left\{\exp\left[j\left(\beta(\omega_{0})z + \omega_{0}t\right)\right] \cdot \left(\frac{1}{2\pi}\int_{-\infty}^{+\infty}V_{d}(x+\omega_{0})\exp\left[jx\left(\beta'(\omega_{0})z+t\right)\right]dx\right\} = (1.39)$$

$$= 2\mathcal{R}e\left\{\exp\left[j\left(\beta(\omega_{0})z + \omega_{0}t\right)\right]\mathcal{F}^{-1}\left[V_{d}(\omega+\omega_{0})\exp\left[j\omega\beta'(\omega_{0})z\right]\right]\right\}.$$

$$(1.40)$$

L'integrale che appare nella precedente espressione risulta quindi l'antitrasformata della parte destra dello spettro del segnale traslato in banda base, valutata in $\beta'(\omega_0)z + t$.

Si consideri adesso, per semplicita', il caso in cui il segnale applicato alla linea sia l'esito di una modulazione di ampiezza (o comunque di una modulazione che porta ad un segnale simmetrico rispetto a ω_0). Per tale tipo di segnale l'antitrasformata che appare nella precedente espressione risultera' reale

$$\mathcal{F}^{-1}\left[V_d(\omega+\omega_0)\exp\left[j\omega\beta'(\omega_0)z\right]\right] = \frac{1}{2}\widetilde{v}_+\left(\beta'(\omega_0)z+t\right) \in \mathbb{R}\,,\qquad(1.41)$$

per cui

$$v_{+}(z,t) = \cos\left(\beta(\omega_{0})z + \omega_{0}t\right)\widetilde{v}_{+}\left(\beta'(\omega_{0})z + t\right).$$
(1.42)

Si noti ora come l'onda di tensione sia data dal prodotto di un'onda sinusoidale avente pulsazione ω_0 che trasla, nel verso delle z negative, con velocita' pari alla velocita' di fase $v_f = \omega_0/\beta_0$ calcolata nel centro banda e un'onda che si propaga ancora lungo il verso delle z negative ma con una velocita', che definiremo velocita' di gruppo v_g , pari a

$$v_g = \left[\beta'(\omega_0)\right]^{-1} = \left[\left.\frac{d\beta(\omega)}{d\omega}\right|_{\omega=\omega_0}\right]^{-1} = \left.\frac{d\omega(\beta)}{d\beta}\right|_{\beta=\beta_0}.$$
 (1.43)

Tale velocita' di gruppo esprime quindi la velocita' con cui si propaga l'inviluppo del segnale. Nel caso di dispersione normale $(dv_f/d\omega < 0)$ tale velocita' di gruppo rappresenta anche la velocita' di trasferimento dell'energia, per cui risultera' sempre minore od uguale alla velocita' della luce nel vuoto 1 .

Si noti come la velocita' di fase v_f calcolata nel centro banda possa risultare, per mezzi dispersivi con dispersione normale, maggiore della velocita' della luce. Questo non e' in contrasto con i principi della teoria della relativita', dato che la velocita' di fase v_f non e' la velocita' con cui si spostano masse ed energie, ma e' una entita' puramente geometrica.

Solo nel caso in cui un mezzo sia non dispersivo la velocita' di trasferimento dell'energia coincide con la velocita' di gruppo e con quella di fase e quindi quest'ultima dovra' risultare minore o uguale alla velocita' della luce nel vuoto.

Nel caso in cui non si possano trascurare i termini di ordine superiore nello sviluppo della costante di fase $\beta(\omega)$ (cio' accade per tempi di propagazione troppo lunghi o per andamenti della costante di fase non linearizzabili rapportati alla banda del segnale utilizzato), l'inviluppo del segnale ad alta frequenza si deformera' ed in particolare tendera' ad allargarsi ed a ridursi in ampiezza (disperdersi).

Per esprimere le ampiezze dell'onda di corrente I_+ e I_- in funzione delle ampiezze dell'onda di tensione V_+ e V_- , derivando rispetto alla variabile z l'espressione della tensione lungo la linea

$$\frac{dV(z)}{dz} = jkV_{+}\exp(jkz) - jkV_{-}\exp(-jkz)$$
(1.44)

e facendo uso dell'equazione (1.9) si ottiene

$$I(z) = \frac{k}{\omega L_{eq}} \left[V_+ \exp(jkz) - V_- \exp(-jkz) \right] \,. \tag{1.45}$$

Definendo impedenza caratteristica della linea la quantita'

$$Z_0 = \frac{\omega L_{eq}}{k} = \frac{\omega L_{eq}}{\omega \sqrt{C_{eq} L_{eq}}} = \sqrt{\frac{L_{eq}}{C_{eq}}} \in \mathbb{C}, \qquad (1.46)$$

e' possibile rappresentare la corrente lungo la linea nel seguente modo:

$$I(z) = \frac{V_{+}}{Z_{0}} \exp(jkz) - \frac{V_{-}}{Z_{0}} \exp(-jkz), \qquad (1.47)$$

¹Nel caso di dispersione anomala $(dv_f/d\omega > 0)$, ad esempio per la dispersione introdotta dalla conduttivita' del mezzo, generalmente tale asserzione non e' valida.

da cui, confrontando quest'ultima relazione con l'eq. (1.16), e' immediato esprimere le ampiezze dell'onda di corrente in funzione di quelle dell'onda di tensione:

$$I_{+} = \frac{V_{+}}{Z_{0}}, \qquad I_{-} = -\frac{V_{-}}{Z_{0}}.$$
 (1.48)

L'espressione generale della tensione e della corrente lungo la linea assume quindi la forma:

$$V(z) = V_{+} \exp(jkz) + V_{-} \exp(-jkz), \qquad (1.49)$$

$$I(z) = \frac{V_+}{Z_0} \exp(jkz) - \frac{V_-}{Z_0} \exp(-jkz).$$
 (1.50)

Nel caso di assenza di perdite (R = G = 0) l'impedenza caratteristica della linea risultera' puramente reale

$$Z_0 = R_0 = \sqrt{\frac{L}{C}} \in \mathbb{R}^+ \,. \tag{1.51}$$

Tuttavia, anche in presenza di perdite $(R \neq 0, G \neq 0)$, si puo' verificare il caso in cui l'impedenza caratteristica della linea risulta reale. Infatti se e' soddisfatta la condizione di Heaviside², ovvero

$$\frac{R}{\omega L} = \frac{G}{\omega C}, \qquad (1.52)$$

e' facile verificare che la parte immaginaria dell'impedenza caratteristica della linea risulta nulla:

$$Z_{0} = \sqrt{\frac{L_{eq}}{C_{eq}}} = \sqrt{\frac{L - jR/\omega}{C - jG/\omega}} = \sqrt{\frac{(LC + RG/\omega^{2})}{C^{2} + G^{2}/\omega^{2}}} - j\frac{(CR/\omega - LG/\omega)}{C^{2} + G^{2}/\omega^{2}}.$$
(1.53)

Si noti comunque che, in tal caso, anche se l'impedenza caratteristica della linea risulta puramente reale, a causa della presenza delle perdite, l'onda si attenuera' nel suo propagarsi.

1.2 Analisi di una linea di trasmissione chiusa su un generico carico

Si prenda ora in esame una linea di impedenza caratteristica Z_0 chiusa su un generico carico Z_u e si indichi con V_u ed I_u , rispettivamente, il valore della tensione e della corrente sul carico (Fig. 1.7):

²Oliver Heaviside 1850–1925

Figura 1.7: Linea chiusa sul generico carico Z_u .

$$V_u = V(0) = V_+ \exp(jkz) + V_- \exp(-jkz)|_{z=0} = V_+ + V_-, \qquad (1.54)$$

$$I_u = I(0) = \frac{V_+}{Z_0} \exp(jkz) - \frac{V_-}{Z_0} \exp(-jkz) \Big|_{z=0} = \frac{V_+ - V_-}{Z_0}.$$
 (1.55)

Esprimendo tali relazioni in termini delle ampiezze V_+ e V_- si ha

$$V_{+} = \frac{1}{2} \left(V_{u} + Z_{0} I_{u} \right), \qquad (1.56)$$

$$V_{-} = \frac{1}{2} \left(V_u - Z_0 I_u \right). \tag{1.57}$$

Cio' permette di esprimere la tensione e la corrente ad una qualsiasi distanza z dal carico in funzione della tensione V_u e della corrente I_u sul carico. Infatti:

$$V(z) = V_{+} \exp(jkz) + V_{-} \exp(-jkz) =$$

= $V_{u} \left\{ \frac{\exp(jkz) + \exp(-jkz)}{2} \right\} + jZ_{0}I_{u} \left\{ \frac{\exp(jkz) - \exp(-jkz)}{2j} \right\},$
(1.58)

per cui

$$V(z) = V_u \cos(kz) + jZ_0 I_u \sin(kz), \qquad (1.59)$$

ed analogamente

$$I(z) = I_u \cos(kz) + j \frac{V_u}{Z_0} \sin(kz) \,. \tag{1.60}$$

E' uso comune definire questa forma della soluzione soluzione di tipo stazionario mentre la forma (1.49)-(1.49) soluzione di tipo viaggiante. E' poi conveniente definire una impedenza *locale* Z(z) che la linea, chiusa su un carico Z_u , presenta all'ascissa z come il rapporto tra la tensione e la corrente a tale ascissa z, quindi:

$$Z(z) = \frac{V(z)}{I(z)} = \frac{V_u \cos(kz) + jZ_0 I_u \sin(kz)}{I_u \cos(kz) + j\frac{V_u}{Z_0} \sin(kz)}.$$
 (1.61)

La suddetta espressione puo' essere convenientemente riscritta tenendo conto che $Z_u = V_u/I_u$:

$$Z(z) = Z_0 \frac{Z_u + jZ_0 \tan(kz)}{Z_0 + jZ_u \tan(kz)}.$$
(1.62)

Quest'ultima equazione esprime il fatto che l'impedenza della linea, oltre ad essere funzione dell'impedenza caratteristica della linea, e' funzione del valore dell'impedenza del carico su cui e' chiusa e varia al variare della distanza z dal carico stesso. Fa eccezione il caso in cui la linea e' chiusa sulla propria impedenza caratteristica (cioe' $Z_u = Z_0$) per cui $Z(z) = Z_0$ lungo tutta la linea. In tal caso si puo' notare che non e' presente l'onda riflessa, infatti:

$$V_{-} = \frac{1}{2} \{ V_u - Z_0 I_u \} = \frac{1}{2} I_u \{ Z_u - Z_0 \} |_{Z_u = Z_0} = 0.$$
 (1.63)

Nel caso generale sara' comunque presente un'onda riflessa e l'impedenza della linea oscillera', in modulo, tra un minimo ed un massimo.

Al fine di caratterizzare quanta parte di onda viene riflessa, e' utile introdurre una quantita' chiamata *coefficiente di riflessione di tensione*, definita come il rapporto tra l'onda riflessa e l'onda diretta di tensione:

$$\Gamma(z) = \frac{V_{-} \exp(-jkz)}{V_{+} \exp(jkz)} = \frac{V_{-}}{V_{+}} \exp(-j2kz).$$
(1.64)

Si noti come sul carico tale coefficiente di riflessione risulti

$$\Gamma(0) = \frac{V_{-}}{V_{+}}, \qquad (1.65)$$

per cui il coefficiente di riflessione di tensione lungo la linea puo' essere riscritto nella forma

$$\Gamma(z) = \Gamma(0) \exp(-j2kz). \qquad (1.66)$$

Analogamente, si definisce anche un *coefficiente di riflessione di corrente* come il rapporto tra l'onda riflessa e l'onda diretta di corrente:

$$\Gamma_I(z) = \frac{I_- \exp(-jkz)}{I_+ \exp(jkz)} = \frac{-V_- \exp(-jkz)}{V_+ \exp(jkz)} = -\Gamma(z).$$
(1.67)

Tramite il coefficiente di riflessione di tensione (o analogamente di corrente) e' possibile rappresentare convenientemente tensione, corrente ed impedenza lungo la linea:

$$V(z) = V_{+} \exp(jkz) \left\{ 1 + \frac{V_{-} \exp(-jkz)}{V_{+} \exp(jkz)} \right\} = V_{+} \exp(jkz) \left\{ 1 + \Gamma(z) \right\},$$
(1.68)

$$I(z) = \frac{V_+}{Z_0} \exp(jkz) \left\{ 1 - \frac{V_- \exp(-jkz)}{V_+ \exp(jkz)} \right\} = \frac{V_+}{Z_0} \exp(jkz) \left\{ 1 - \Gamma(z) \right\},$$
(1.69)

$$Z(z) = \frac{V(z)}{I(z)} = \frac{V_{+} \exp(jkz) \left\{ 1 + \Gamma(z) \right\}}{\frac{V_{+}}{Z_{0}} \exp(jkz) \left\{ 1 - \Gamma(z) \right\}} = Z_{0} \frac{1 + \Gamma(z)}{1 - \Gamma(z)}.$$
 (1.70)

Dalla relazione (1.70) e' evidente come l'impedenza lungo la linea puo' essere posta in funzione della sola impedenza caratteristica e del coefficiente di riflessione di tensione. Inolte, essendo tale relazione invertibile, si ottiene:

$$\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0}.$$
(1.71)

In particolare per z = 0

$$\Gamma(0) = \frac{Z_u - Z_0}{Z_u + Z_0}, \qquad (1.72)$$

per cui

$$\Gamma(z) = \Gamma(0) \exp(-j2kz) = \left\{ \frac{Z_u - Z_0}{Z_u + Z_0} \right\} \exp(-j2kz) \,. \tag{1.73}$$

Cio' esprime il fatto che, assegnate le costanti secondarie della linea e nota l'impedenza del carico, e' possibile determinare il valore del coefficiente di riflessione di tensione lungo tutta la linea. Tale conoscenza permette altresi' di valutare, tramite l'espressione (1.70), il valore di impedenza che la linea presenta a una generica ascissa z.

1.3 Potenza in una linea di trasmissione

La potenza complessa fluente attraverso una generica sezione trasversa,

$$P(z) = \frac{1}{2}V(z)I^*(z), \qquad (1.74)$$

puo' essere espressa, tramite le equazioni (1.68) e (1.69), in funzione del coefficiente di riflessione di tensione:

$$P(z) = \frac{1}{2} \left(V_{+} \exp(jkz) \left\{ 1 + \Gamma(z) \right\} \right) \left(\frac{V_{+}}{Z_{0}} \exp(jkz) \left\{ 1 - \Gamma(z) \right\} \right)^{*} = \frac{1}{2} \frac{|V_{+}|^{2} \exp(-2\mathcal{I}m\{k\}z)}{Z_{0}^{*}} \left\{ \left[1 - |\Gamma(z)|^{2} \right] + \left[\Gamma(z) - \Gamma^{*}(z) \right] \right\}.$$
 (1.75)

Si noti come il primo termine tra parentesi quadre risulta reale mentre il secondo puramente immaginario. Pertanto, nel caso in cui la linea sia priva di perdite ($R = G = 0 \Rightarrow Z_0 = R_0 \in \mathbb{R}$), il termine

$$\frac{1}{2} \frac{|V_{+}|^{2}}{R_{0}} \left[1 - |\Gamma(z)|^{2} \right]$$
(1.76)

rappresenta la potenza attiva che fluisce attraverso una generica sezione trasversa, mentre il termine

$$\frac{1}{2} \frac{|V_{+}|^{2}}{R_{0}} \left[\Gamma(z) - \Gamma^{*}(z) \right]$$
(1.77)

la potenza reattiva.

Si noti che in assenza di perdite la costante di propagazione e' puramente reale $(k = \beta \in \mathbb{R}^+)$ per cui il modulo del coefficiente di riflessione risulta costante lungo tutta la linea cosi' come la potenza attiva che transita attraverso una generica sezione. Ne consegue che, in questo caso, la potenza attiva fluente attraverso una qualsiasi sezione trasversa della linea e' anche la potenza che si dissipa sul carico su cui la linea e' chiusa.

Supponiamo adesso di aver chiuso la linea sulla propria impedenza caratteristica: in tal caso, non essendo presente onda riflessa, il coefficiente di riflessione e' nullo e la potenza attiva fluente risultera'

$$P_{inc} = \frac{1}{2} \frac{|V_+|^2}{R_0} [1]. \qquad (1.78)$$

Tale potenza e' legata alla sola onda diretta e rappresenta la potenza attiva incidente su una generica sezione trasversa.

Consideriamo ora il caso in cui la linea venga chiusa su un generico carico Z_u per cui $|\Gamma(z)| \neq 0$: la potenza attiva fluente attraverso una generica sezione trasversa sara'

$$P_a = \frac{1}{2} \frac{|V_+|^2}{R_0} [1] - \frac{1}{2} \frac{|V_+|^2}{R_0} |\Gamma(z)|^2 = P_{inc} - P_{rif}.$$
(1.79)

Figura 1.8: Schematizzazione di una linea chiusa sulla propria impedenza caratteristica.

Quindi il secondo termine a secondo membro rappresenta la potenza attiva riflessa dal carico. Il segno meno sta ad indicare che essa fluisce nel verso contrario a quello in cui fluisce la potenza incidente.

A meno che non esistano generatori a destra della sezione trasversa considerata, in una linea senza perdite la potenza attiva riflessa dovra' risultare sempre minore o al piu' uguale a quella incidente sulla sezione stessa. Dovra' essere quindi sempre verificata la condizione:

$$|\Gamma(z)|^2 \le 1.$$
 (1.80)

1.4 Comportamento di una linea per particolari valori del carico

In seguito si supporta', se non altrimenti esplicitamente espresso, che le linee prese in esame siano prive di perdite (R = G = 0) per cui

$$k = \beta \in \mathbb{R}^+, \qquad Z_0 = R_0 \in \mathbb{R}^+.$$
(1.81)

1.4.1 Linea chiusa sulla propria impedenza caratteristica

La linea e' ritenuta chiusa sulla propria impedenza caratteristica, cioe' su un carico $Z_u = R_0$ (Fig. 1.8). Da cio' consegue che

$$V_{+} = \frac{1}{2} \left(V_{u} + R_{0} I_{u} \right) = \frac{1}{2} V_{u} \left(1 + R_{0} / Z_{u} \right) \bigg|_{Z_{u} = R_{0}} = V_{u} , \qquad (1.82)$$

$$V_{-} = \frac{1}{2} \left(V_{u} - R_{0} I_{u} \right) = \frac{1}{2} V_{u} \left(1 - R_{0} / Z_{u} \right) \Big|_{Z_{u} = R_{0}} = 0, \qquad (1.83)$$

Figura 1.9: Andamento del modulo della tensione e della corrente lungo una linea chiusa sulla propria impedenza caratteristica.

$$\Gamma(0) = \frac{V_{-}}{V_{+}} = 0 \quad \Rightarrow \quad \Gamma(z) = \Gamma(0) \exp(-j2\beta z) = 0, \qquad (1.84)$$

$$V(z) = V_u \exp(j\beta z) = |V_u| \exp(j\phi_u) \exp(j\beta z), \qquad (1.85)$$

$$I(z) = \frac{V_u}{R_0} \exp(j\beta z) = \frac{|V_u|}{R_0} \exp(j\phi_u) \exp(j\beta z), \qquad (1.86)$$

$$Z(z) = R_0. (1.87)$$

Dalle precedenti espressioni e' evidente che per tale configurazione

- manca l'onda riflessa sia di tensione che di corrente;
- il modulo di V(z), cosi' come quello di I(z), e' costante lungo la linea (Fig. 1.9);
- tensione e corrente in ogni punto della linea sono in fase;
- la fase $\Phi(z) = \phi_u + \beta z$ della tensione V(z) cosi' come quella della corrente I(z), cresce linearmente all'aumentare della distanza del punto di osservazione dal carico (Fig. 1.10);
- l'impedenza della linea Z(z) e' pari all'impedenza caratteristica R_0 della linea in ogni punto della linea (Fig. 1.11).

Si vuole ora analizzare il comportamento reale delle quantita' elettriche al variare del tempo t. Supponendo il segnale isofrequenziale

$$v(z,t) = Re\left\{V(z)\exp(j\omega t)\right\} = |V_u|\cos(\omega t + \beta z + \phi_u), \qquad (1.88)$$

$$i(z,t) = Re \{I(z)\exp(j\omega t)\} = \frac{|V_u|}{R_0}\cos(\omega t + \beta z + \phi_u).$$
(1.89)

Figura 1.10: Andamento della fase della tensione e della corrente lungo una linea chiusa sulla propria impedenza caratteristica.

Figura 1.11: Andamento dell'impedenza lungo una linea chiusa sulla propria impedenza caratteristica.

Quindi, allo specifico istante di tempo t_0 , la distribuzione lungo la linea della tensione e/o della corrente risulta cosinusoidale con ampiezza indipendente dall'istante considerato, cosi' come mostrato in Fig. 1.12 (linea continua). Se si considera l'andamento della distribuzione ad un istante di tempo $t_1 = t_0 + \Delta t$ (linea tratteggiata) questa risulta traslata verso il carico di una lunghezza $\Delta z = v_f \Delta t$ dove con $v_f = \omega/\beta$ si e' indicata la velocita' di fase dell'onda. In tal caso si parla di onda progressiva di tensione e/o di corrente.

Si noti che la velocita' con la quale si sposta l'energia e' in realta' pari alla velocita di gruppo v_g che, nello specifico caso considerato di linee prive di perdite e non dispersive (induttanza e capacita' per unita' di lunghezza della linea indipendenti dalla frequenza), coincide con la velocita' di fase.

Figura 1.12: Andamento della tensione lungo la linea al generico istante $t_0 \in t_0 + \Delta_t$.

Ad uno specifico istante di tempo $t = t_0$ l'andamento della tensione al variare della coordinata z,

$$v(z, t_0) = |V_u| \cos(\omega t_0 + \phi_u + \beta z), \qquad (1.90)$$

si evidenzia che la funzione coseno e' una funzione periodica di periodo 2π , per cui, la linea presentera' uno stesso valore di tensione ad ogni ascissa

$$z = n \frac{2\pi}{\beta} + z_0, \qquad n = 0, \pm 1, \pm 2... \quad \forall z_0.$$
 (1.91)

Comportamento analogo si avra' anche per le altre quantita' elettriche.

Definendo lunghezza d'onda della linea il periodo

$$\lambda = \frac{2\pi}{\beta} \,, \tag{1.92}$$

deriva che la velocita' di fase si esprime anche:

$$v_f = \frac{\omega}{\beta} = \frac{\omega\lambda}{2\pi} = \frac{2\pi f\lambda}{2\pi} = f\lambda.$$
(1.93)

1.4.2 Linea chiusa in corto circuito

Si definisce corto circuito un carico ai capi del quale la tensione risulta nulla $(V_u = 0)$ (Fig. 1.13). Da cio' consegue che

$$V_{+} = \frac{1}{2} \left(V_{u} + R_{0} I_{u} \right) \Big|_{V_{u}=0} = +\frac{1}{2} I_{u} R_{0} , \qquad (1.94)$$

$$V_{-} = \frac{1}{2} \left(V_{u} - R_{0} I_{u} \right) \Big|_{V_{u}=0} = -\frac{1}{2} I_{u} R_{0} , \qquad (1.95)$$

Figura 1.13: Schematizzazione di una linea in corto circuito.

$$\Rightarrow \quad V_+ = -V_- \,, \tag{1.96}$$

$$\Gamma(0) = \frac{V_{-}}{V_{+}} = -1 \quad \Rightarrow \quad \Gamma(z) = \Gamma(0) \exp(-j2\beta z) = -\exp(-j2\beta z) \,, \quad (1.97)$$

$$V(z) = V_+ \left(\exp(j\beta z) - \exp(-j\beta z) \right) = 2jV_+ \sin(\beta z) = jI_u R_0 \sin(\beta z) ,$$
(1.98)

$$I(z) = \frac{V_{+}}{R_{0}} \left(\exp(j\beta z) + \exp(-j\beta z) \right) = 2\frac{V_{+}}{R_{0}} \cos(\beta z) = I_{u} \cos(\beta z) , \quad (1.99)$$

$$Z(z) = \frac{V(z)}{I(z)} = \frac{jI_u R_0 \sin(\beta z)}{I_u \cos(\beta z)} = jR_0 \tan(\beta z) = jX(z).$$
(1.100)

Per quanto riguarda l'impedenza del carico risulta

$$Z_u = \lim_{z \to 0^+} Z(z) = \lim_{z \to 0^+} jR_0 \tan(\beta z) = 0.$$
 (1.101)

Dalle precedenti espressioni e' evidente che per tale configurazione

- l'onda riflessa di tensione ha la stessa ampiezza di quella diretta a meno del segno;
- il modulo della tensione V(z) ha un andamento proporzionale al modulo di un seno, si annulla per $z = n\lambda/2$ (n = 0, 1, 2, ...) ed e' massimo per $z = \lambda(1 + 2n)/4$ (Fig. 1.14);

Figura 1.14: Andamento del modulo della tensione e della corrente lungo una linea chiusa in corto circuito.

Figura 1.15: Andamento della reattanza in una linea chiusa in corto circuito.

- il modulo della corrente I(z) ha un andamento proporzionale al modulo di un coseno, si annulla per z = λ(1+2n)/4 ed e' massimo per z = nλ/2 (Fig. 1.14);
- tensione e corrente in ogni punto della linea risultano sfasate di $\pm \pi/2$ per cui in una linea chiusa in corto circuito non si potra' misurare alcuna potenza attiva ma solo potenza reattiva;
- l'impedenza della linea Z(z), per linee prive di perdite, e' puramente reattiva; tale impedenza risulta induttiva per $z \in (n\lambda/2, \lambda/4+n\lambda/2)$, capacitiva per $z \in (\lambda/4+n\lambda/2, \lambda/2+n\lambda/2)$ e puo' assumere tutti i valori compresi tra $-j\infty$ e $+j\infty$ (Fig. 1.15).

Il fatto che un tal tipo di linea, al variare della sua lunghezza, possa realizzare un qualsiasi valore reattivo fa si' che essa possa essere impiegata per realizzare in modo distribuito una qualsiasi reattanza. Si noti tuttavia

Figura 1.16: Andamento della tensione al variare del tempo in una linea chiusa in corto circuito.

che, anche se cio' e' teoricamente possibile, nella realizzazione pratica le inevitabili tolleranze di costruzione non permettono di realizzare valori di reattanza in modulo elevati. Infatti cio' equivalrebbe a lavorare nell'intorno di $z = \lambda/4 + n\lambda/2$ (n = 0, 1, 2, ...) in cui l'andamento della funzione tangente risulta molto ripido e quindi un piccolo errore nella lunghezza della linea comporta un grande errore nella realizzazione dell'induttanza desiderata.

Si vuole analizzare, anche per questa configurazione, il comportamento delle quantita' elettriche al variare del tempo t, supponendo il segnale isofrequenziale e $I_u = |I_u| \exp(j\phi_u)$

$$v(z,t) = Re \{V(z)\exp(j\omega t)\} = -R_0 |I_u|\sin(\beta z)\sin(\omega t + \phi_u), \quad (1.102)$$

$$i(z,t) = Re\left\{I(z)\exp(j\omega t)\right\} = |I_u|\cos(\beta z)\cos(\omega t + \phi_u), \qquad (1.103)$$

Quindi, ad ogni specifico istante di tempo, la distribuzione lungo la linea della tensione e/o della corrente risulta il prodotto di due funzioni cosinusoidali, una funzione dello spazio e l'altra del tempo. Entrambe le distribuzioni non traslano al variare del tempo ma pulsano mantenendo i valori massimi e quelli nulli sempre negli stessi punti della linea (Fig. 1.16). In tal caso si parla di configurazione stazionaria della tensione e/o della corrente.

Esercizio 1.1 Si confronti l'andamento della tensione in una linea in aria, lunga 20 cm e chiusa in corto circuito, nel caso in cui si lavori ad una frequenza $f_1 = 50 \text{ Hz}$ oppure ad una frequenza $f_2 = 300 \text{ MHz}$.

Ove la frequenza di lavoro sia $f_1 = 50 Hz$, poiche' i due conduttori sono supposti circondati solo da aria che con buona approssimazione presenta le stesse

costanti dielettriche e magnetiche del vuoto, la lunghezza d'onda risultera'

$$\lambda_1 = \frac{v_f}{f_1} = \frac{c}{f_1} = \frac{300\,10^6}{50} = 6000\,Km\,.$$

Ne deriva che spostandosi $20\,cm$ dal corto circuito si misurera' una tensione normalizzata pari a

$$\left|\frac{V(0.2)}{V_{+}}\right| = \left|2\sin(\frac{2\pi}{\lambda_{1}}z)\right|_{z=0.2} = 4.188\,10^{-7} \simeq 0\,.$$

Per una frequenza di lavoro di $f_2 = 300 MHz$ la lunghezza d'onda risultera'

$$\lambda_2 = \frac{c}{f_2} = \frac{300\,10^6}{300\,10^6} = 1\,m\,,$$

e quindi a $20\,cm$ dal corto circuito si misurera' una tensione normalizzata pari a

$$\left|\frac{V(0.2)}{V_{+}}\right| = \left|2\sin(\frac{2\pi}{\lambda_{2}}z)\right|_{z=0.2} = 1.9.$$

Dall'esempio si puo' facimente comprendere come mai nella pratica in bassa frequenza un tratto di linea in corto circuito realizzi comunque un buon corto circuito anche se ha una lunghezza finita. Si noti infatti che per la frequenza di lavoro di 50 Hz una linea in aria chiusa in corto circuito dovrebbe essere lunga 1200 Km al fine di presentare la stessa tensione normalizzata di una analoga linea lunga solo 20 cm ma alimentata con un segnale a frequenza 300 MHz.

1.4.3 Linea aperta

Si definisce circuito aperto un carico su cui scorre una corrente nulla $(I_u = 0)$ (Fig. 1.17). Da cio' ne consegue che

$$V_{+} = \frac{1}{2} \left(V_{u} + R_{0} I_{u} \right) \Big|_{I_{u}=0} = \frac{1}{2} V_{u} , \qquad (1.104)$$

$$V_{-} = \frac{1}{2} \left(V_{u} - R_{0} I_{u} \right) \Big|_{I_{u}=0} = \frac{1}{2} V_{u} , \qquad (1.105)$$

$$\Rightarrow \quad V_+ = V_- \,, \tag{1.106}$$

Figura 1.17: Schematizzazione di una linea in circuito aperto.

$$\Gamma(0) = \frac{V_{-}}{V_{+}} = 1 \quad \Rightarrow \quad \Gamma(z) = \Gamma(0) \exp(-j2\beta z) = \exp(-j2\beta z) , \quad (1.107)$$

$$V(z) = V_{+} \left(\exp(j\beta z) + \exp(-j\beta z) \right) = 2V_{+} \cos(\beta z) = V_{u} \cos(\beta z) , \quad (1.108)$$
$$I(z) = \frac{V_{+}}{R_{0}} \left(\exp(j\beta z) - \exp(-j\beta z) \right) = 2j \frac{V_{+}}{R_{0}} \sin(\beta z) = j \frac{V_{u}}{R_{0}} \sin(\beta z) , \quad (1.109)$$

$$Z(z) = \frac{V(z)}{I(z)} = \frac{V_u R_0 \cos(\beta z)}{j V_u \sin(\beta z)} = -j R_0 \cot(\beta z) = j X(z) .$$
(1.110)

Per quanto riguarda l'impedenza del carico essa risulta

$$Z_u = \lim_{z \to 0^+} Z(z) = \lim_{z \to 0^+} -jR_0 \cot(\beta z) = -j\infty.$$
 (1.111)

Dalle precedenti espressioni e' evidente che per tale configurazione:

- l'onda riflessa di tensione ha stessa ampiezza di quella diretta;
- il modulo della tensione V(z) ha un andamento proporzionale al modulo di un coseno, si annulla per $z = \lambda(1+2n)/4$ ed e' massimo per $z = n\lambda/2$;
- il modulo della corrente I(z) ha un andamento proporzionale al modulo di un seno, si annulla per $z = n\lambda/2$ (n = 0, 1, 2, ...) ed e' massimo per $z = \lambda(1 + 2n)/4$;
- l'impedenza della linea Z(z), per linee prive di perdite, e' puramente reattiva; tale impedenza risulta inoltre capacitiva per $z \in (n\lambda/2, \lambda/4 + n\lambda/2)$, induttiva per $z \in (\lambda/4 + n\lambda/2, \lambda/2 + n\lambda/2)$ e puo' teoricamente assumere tutti i valori compresi tra $-j\infty e + j\infty$;

• tensione e corrente in ogni punto della linea risultano sfasate di $\pm \pi/2$ per cui in una linea aperta non si potra' misurare alcuna potenza attiva ma solo potenza reattiva.

E' inoltre da notare che dopo aver percorso una distanza di $z = \lambda/4$ dal carico, l'andamento dell'impedenza di una linea aperta, cosi' come delle altre quantita' elettriche, risulta lo stesso di quello di una linea chiusa in corto circuito. Quindi anche per una linea aperta possono essere fatte considerazioni analoghe a quelle gia' espresse per una linea in corto circuito.

Esercizio 1.2 Si calcoli la lunghezza ℓ che deve avere un cavo coassiale di impedenza caratteristica $R_0 = 50 \Omega$, riempito di dielettrico caratterizzato da una costante dielettrica relativa $\epsilon_r = 4$, per rappresentare, alla frequenza $f_0 = 600 MHz$, un condensatore di 1 pF.

Alla frequenza di lavoro f_0 il condensatore da $1 \, pF$ presenta una reattanza pari a:

$$jX = \frac{1}{j\omega C} = \frac{1}{j2\pi f_0 C} = -j\frac{1}{2\pi}\frac{1}{600\,10^6}\frac{1}{10^{-12}} \simeq -j265\,\Omega\,,$$

mentre per il cavo coassiale in esame, in cui e' supposto propagarsi il modo TEM, la costante di fase risultera':

$$\beta = \omega \sqrt{\epsilon_0 \mu_0} \sqrt{\epsilon_r} = \frac{\omega}{c} \sqrt{\epsilon_r} = \frac{2\pi 600 \, 10^6}{300 \, 10^6} \sqrt{4} = 8\pi \, rad/m \, .$$

Qualora si voglia realizzare la suddetta reattanza con una configurazione a linea aperta e' possibile ricavare la lunghezza ℓ_a desiderata tramite l'espressione dell'impedenza di una linea chiusa su un circuito aperto:

$$jX(\ell_a) = -jR_0 \cot(\beta \ell_a) = jX = -j265\,\Omega\,,$$

$$\Rightarrow \ell_a = \frac{\arctan(-R_0/X)}{\beta} + \frac{n\pi}{\beta} \simeq 0.0548 + \frac{n}{8} m \qquad n = 0, 1, 2, \dots$$

Nel caso si avesse voluto metallizzare una estremita' del cavo coassiale, cioe' usare una linea chiusa su un corto circuito, sarebbe stato sufficiente aggiungere alla misura calcolata per la configurazione in circuito aperto una lunghezza pari ad un quarto della lunghezza d'onda nel cavo, cioe':

$$\ell_c = \ell_a + \frac{\lambda}{4} = \ell_a + \frac{2\pi}{\beta} \frac{1}{4} = (0.0548 + n/8) + \frac{1}{16} \simeq 0.1173 + \frac{n}{8} m.$$

Figura 1.18: Geometria del problema relativa all'esercizio 1.3.

Qualora cercassimo di verificare questo risultato tramite una misura noteremmo che, mentre per un cavo chiuso in corto circuito di lunghezza ℓ_c l'impedenza e' quella richiesta, per un cavo in circuito aperto di lunghezza ℓ_a l'impedenza misurata risulta di poco discosta da quella desiderata. Cio' e' dovuto al fatto che non metallizzando l'estremita' del cavo non si riesce a realizzare un circuito aperto ideale, cioe' caratterizzato da un'impedenza infinita, in quanto la configurazione del modo TEM e' perturbata ed il cavo irradia nello spazio circostante. L'estremita' del cavo infatti si comporta come una antenna ad apertura avente una bassa efficienza, caratterizzabile da un'impedenza avente una piccola parte reale ed una parte immaginaria grande ma comunque non infinita. Tale problema e' comune a tutte le linee di trasmissione, anche se in modo maggiore o minore a seconda del tipo di linea. Questo spiega perche', laddove e' possibile, per realizzare reattanze distribuite e' preferibile utilizzare una configurazione a circuito chiuso rispetto ad una a circuito aperto.

Esercizio 1.3 Nel circuito di figura 1.18 la linea di impedenza R_1 e' costituita da un cavo coassiale riempito da un dielettrico caratterizzato da $\epsilon_{r1} = 16$, mentre quella di impedenza R_2 da un cavo coassiale riempito da un dielettrico avente $\epsilon_{r2} = 4$. Si determini il modulo della tensione alla sezione BB' per una frequenza di lavoro $f_0 = 300 \text{ MHz}$. ($\ell_1 = \ell_2 = 0.125 \text{ m}$, $Z_1 = 100 + j100 \Omega$, $Z_2 = 200 \Omega$, $R_0 = R_1 = 50 \Omega$, $R_2 = 100 \Omega$)

Alla frequenza $f_0 = 300 MHz$ il cavo coassiale di impedenza R_1 , in cui e' supposto propagarsi il modo TEM, presenta una lunghezza d'onda λ_1 pari a:

$$\lambda_1 = \frac{v_f}{f_0} = \frac{c}{\sqrt{\varepsilon_{r1}}} \frac{1}{f_0} = \frac{300\,10^6}{\sqrt{16}} \frac{1}{300\,10^6} = 0.25\,m\,,$$

Figura 1.19: Circuito equivalente (Es. 1.3).

mentre per il tratto di cavo di impedenza R_2 la lunghezza d'onda λ_2 risulta:

$$\lambda_2 = \frac{v_f}{f_0} = \frac{c}{\sqrt{\varepsilon_{r2}}} \frac{1}{f_0} = \frac{300\,10^6}{\sqrt{4}} \frac{1}{300\,10^6} = 0.50\,m\,,$$

Quindi, in termini di lunghezza d'onda, il tratto di linea compreso tra le sezioni CC'-DD' risulta pari a:

$$\ell_1 = \frac{\ell_1}{\lambda_1} \lambda_1 = \frac{0.125}{0.25} \lambda_1 = \frac{\lambda_1}{2},$$

mentre quello compreso tra le sezioni BB'-CC':

$$\ell_2 = \frac{\ell_2}{\lambda_2} \,\lambda_2 = \frac{0.125}{0.50} \,\lambda_2 = \frac{\lambda_2}{4}$$

E' subito evidente che il corto circuito alla sezione DD' dopo un tratto di linea $\ell_1 = \lambda_1/2$ si presenta come un corto circuito in parallelo al carico Z_2 . Percio', qualsiasi sia il valore del carico Z_2 , alla sezione CC' si avra' un carico equivalente costituito ancora da un corto circuito. Spostandosi dalla sezione CC' alla sezione BB' di $\ell_2 = \lambda_2/4$ tale corto circuito equivalente si trasformera' in un circuito aperto posto in parallelo all'impedenza Z_1 . Ci si riduce quindi al semplice circuito equivalente di Fig. 1.19, dove il tratto di linea AA'-BB' di impedenza R_1 risulta pari a $3\ell_1 = 3\lambda_1/2$. Poiche' sia l'impedenza che il modulo della tensione lungo una linea risultano quantita' periodiche con periodo pari a $\lambda_1/2$, invece di calcolare il modulo della tensione alla sezione BB' si puo' equivalentemente valutare tale modulo ai capi dell'impedenza Z_1 riportata alla sezione AA', cioe':

$$|V_{BB'}| = |V_{AA'}| = \frac{|V_g|}{|R_0 + Z_1|} |Z_1| \simeq 0.785 |V_g|.$$

32

1.4.4 Linea chiusa su un carico reattivo

Si e' visto come e' sempre possibile sostituire un carico puramente reattivo con un opportuno tratto di linea in corto circuito (circuito aperto). Nel caso in cui la linea sia chiusa su un carico reattivo si puo' quindi pensare di sostituire il carico reattivo con un tratto di lunghezza ℓ della stessa linea chiusa in corto circuito (circuito aperto). Ne deriva che gli andamenti della tensione, della corrente e dell'impedenza lungo la linea equivalente in corto circuito (circuito aperto) coincideranno, a partire dall'ascissa $z = \ell$, con quelli della linea chiusa sul carico reattivo.

1.4.5 Linea chiusa su un generico carico Z_u

Nel caso di una linea priva di perdite chiusa su un carico Z_u generico, esprimendo le ampiezze dell'onda diretta e riflessa di tensione in termini di modulo e fase, cioe'

$$V_{+} = |V_{+}| \exp(j\phi_{+}), \qquad V_{-} = |V_{-}| \exp(j\phi_{-}), \qquad (1.112)$$

il coefficiente di riflessione di tensione assume la forma:

$$\Gamma(z) = \frac{|V_{-}| \exp(j\phi_{-}) \exp(-j\beta z)}{|V_{+}| \exp(j\phi_{+}) \exp(+j\beta z)} = \frac{|V_{-}|}{|V_{+}|} \exp\left[j(\phi_{-} - \phi_{+} - 2\beta z)\right] = |\Gamma(0)| \exp\left[j(\phi_{-} - \phi_{+} - 2\beta z)\right]. \quad (1.113)$$

All'aumentare dell'ascissa z, cioe' spostandosi dal carico verso il generatore, l'angolo $(\phi_- - \phi_+)$ verra' decrementato della quantita' $2\beta z$. Quindi, spostandosi dal carico verso il generatore, il vettore rappresentante nel piano dei fasori il coefficiente di riflessione di tensione ruotera' in senso orario, descrivendo una circonferenza di raggio $|\Gamma(0)| \leq 1$ (Fig. 1.20). Si noti che nel caso si percorra lungo la linea di trasmissione una distanza pari a $z = \lambda/2$, corrispondente ad un angolo $2\beta z = 2\pi$, tale vettore compie un giro completo della circonferenza, mettendo cosi' in evidenza che il coefficiente di riflessione e' una quantita' periodica di periodo $\lambda/2$. Viceversa spostandosi dal generatore verso il carico, tale vettore ruotera' in senso antiorario.

Nel paragrafo 1.2 si e' visto come e' possibile esprimere l'andamento della tensione e della corrente in funzione del coefficiente di riflessione, cioe':

$$V(z) = V_{+} \exp(jkz) \left\{ 1 + \Gamma(z) \right\}, \qquad (1.114)$$

$$I(z) = \frac{V_+}{R_0} \exp(jkz) \left\{ 1 - \Gamma(z) \right\}.$$
 (1.115)

Figura 1.20: Rappresentazione nel piano dei fasori del coefficiente di riflessione.

Per valutare l'andamento del modulo sia della tensione che della corrente lungo la linea di trasmissione, operando il modulo delle precedenti espressioni, risulta:

$$|V(z)| = |V_+| |1 + \Gamma(z)| , \qquad (1.116)$$

$$|I(z)| = \frac{|V_+|}{R_0} |1 - \Gamma(z)| . \qquad (1.117)$$

Si rappresenti adesso nel piano dei fasori la quantita' $1 + \Gamma(z)$, al cui modulo e' proporzionale il modulo della tensione lungo la linea. Spostandosi lungo la linea, il vettore \overrightarrow{AP} , espressione del coefficiente di riflessione, ruotera' attorno al punto A (Fig. 1.21). Ne segue che il modulo del vettore $|\overrightarrow{OP}| \equiv |1 + \Gamma(z)|$ al variare del valore della coordinata z descrivera' una cicloide (Fig. 1.22). In particolare tale cicloide, avente periodicita' $\lambda/2$, presentera' un massimo $1+|\Gamma(z)|$ in corrispondenza del punto M, ed un minimo $1-|\Gamma(z)|$ in corrispondenza del punto N.

Il modulo della corrente lungo la linea risulta invece proporzionale al modulo della quantita' $1 - \Gamma(z)$ che e' rappresentata nel piano dei fasori dal vettore \overrightarrow{OQ} (Fig. 1.21). Il punto Q risulta sempre simmetrico al punto P rispetto al punto A, per cui il modulo della corrente avra' un andamento analogo a quello del modulo della tensione ma presentera' un minimo quando il modulo della tensione e' massimo ed un massimo quando questo e' minimo.

Per quanto riguarda l'impedenza della linea al variare della coordinata z,

Figura 1.21: Rappresentazione della quantita' $1 + \Gamma(z)$ nel piano dei fasori.

Figura 1.22: Andamento della tensione e della corrente normalizzata lungo una linea chiusa su un generico carico.

si avra':

$$Z(z) = R_0 \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = R_0 \frac{|1 + \Gamma(z)|}{|1 - \Gamma(z)|} \exp\left[j\Phi(z)\right], \qquad (1.118)$$

dove $\Phi(z)$ risulta essere l'angolo compreso tra i vettori $\overrightarrow{OP} \in \overrightarrow{OQ}$. Si puo' osservare che nei punti $M \in N$, corrispondenti rispettivamente al massimo ed al minimo di tensione lungo la linea, l'impedenza risulta puramente reale

 $(\Phi(z) = 0)$ e pari a:

p.to M
$$\Rightarrow$$
 $|Z(z)|_{max} = R_0 \frac{1 + |\Gamma(z)|}{1 - |\Gamma(z)|},$ (1.119)

p.to N
$$\Rightarrow$$
 $|Z(z)|_{min} = R_0 \frac{1 - |\Gamma(z)|}{1 + |\Gamma(z)|}$. (1.120)

1.5 Rapporto d'onda stazionaria

Per una linea priva di perdite e' utile introdurre il rapporto d'onda stazionaria $(ROS)^3$ definito come il rapporto tra il valore massimo e minimo della tensione misurato lungo la linea:

$$ROS = \frac{|V(z)|_{max}}{|V(z)|_{min}} = \frac{1 + |\Gamma(z)|}{1 - |\Gamma(z)|}.$$
 (1.121)

Nel caso di segnale monocromatico |V(z)| e' pari all'inviluppo dell'andamento temporale della tensione. Quindi al fine di misurare il *ROS* sara' sufficiente misurare il valore massimo e minimo che tale inviluppo presenta lungo la linea e poi operarne il rapporto.

La relazione (1.121) e' invertibile, per cui

$$|\Gamma(z)| = |\Gamma(0)| = \frac{ROS - 1}{ROS + 1}.$$
(1.122)

Si noti che per una linea chiusa su un carico passivo $0 \le |\Gamma(z)| \le 1$, per cui il rapporto d'onda stazionaria risultera'

$$1 \le ROS \le +\infty, \tag{1.123}$$

dove il valore unitario sara' assunto quando nella linea sara' presente solo onda progressiva (assenza cioe' di onda riflessa), mentre il valore $+\infty$ sara' assunto quando nella linea e' presente solo onda stazionaria (l'onda diretta e' riflessa completamente dal carico).

Si noti inoltre come un valore del rapporto d'onda stazionaria pari a ROS = 1.22 equivale ad un modulo del coefficiente di riflessione $|\Gamma(z)| \simeq 0.1$. Quindi quasi il 10% dell'onda diretta viene riflesso verso il generatore. In termini di potenza cio' corrisponde solo all'1%, infatti $|\Gamma(0)|^2 \simeq 0.01$, per cui generalmente si parla di buon adattamento qualora il $ROS \leq 1.2$. In Fig. (1.23) si riporta la percentuale di potenza riflessa per un valore del rapporto d'onda stazionaria compreso tra 1 e 3.

³Tale quantita' e' generalmente anche indicata VSWR dall'inglese Voltage Standing Wave Ratio.

Figura 1.23: Percentuale di potenza riflessa verso il generatore in funzione del rapporto d'onda stazionaria.

Nel paragrafo precedente si era notato come la massima e la minima impedenza misurabile sulla linea fossero funzione del modulo del coefficiente di riflessione, ora tali quantita' possono essere messe in funzione anche del rapporto d'onda stazionaria secondo le relazioni:

$$|Z(z)|_{max} = R_0 \frac{1 + |\Gamma(0)|}{1 - |\Gamma(0)|} = R_0 ROS, \qquad (1.124)$$

$$|Z(z)|_{min} = R_0 \frac{1 - |\Gamma(0)|}{1 + |\Gamma(0)|} = \frac{R_0}{ROS}.$$
 (1.125)

Esercizio 1.4 Per la linea priva di perdite descritta in Fig. 1.24 si determini il coefficiente di riflessione sul carico, il rapporto d'onda stazionaria misurato nel tratto BB' - CC', quello nel tratto AA' - BB', e l'impedenza alla sezione AA' ($R_0 = 50 \Omega$, $Z_u = 50 + j100 \Omega$, $Z_1 = 57 + j182 \Omega$). Si determini inoltre la potenza dissipata su ciascun carico.

Il coefficiente di riflessione sul carico risulta:

$$\Gamma(0) = \frac{Z_u - R_0}{Z_u + R_0} = \frac{(50 + j100) - 50}{(50 + j100) + 50} = \frac{1 + j}{2} = \frac{\sqrt{2}}{2} \exp(j\pi/4).$$

Il rapporto d'onda stazionara non varia nel tratto di linea compreso tra le sezioni $BB' \in CC'$ in quanto la linea e' supposta priva di perdite e quindi il modulo del coefficiente di riflessione risulta costante rispetto alla coordinata

Figura 1.24: Geometria del problema relativa all'esercizio 1.4.

z, per cui

$$ROS_{BB'-CC'} = \frac{1+|\Gamma(0)|}{1-|\Gamma(0)|} = \frac{1+\sqrt{2}/2}{1-\sqrt{2}/2} \simeq 5.83$$

Il coefficiente di riflessione subito a destra della sezione BB' risulta

$$\Gamma(\lambda/16) = \left. \Gamma(0) \exp(-j2\beta z) \right|_{z=\lambda/16} = \Gamma(0) \exp(-j2\frac{2\pi}{\lambda}\frac{\lambda}{16}) = \frac{\sqrt{2}}{2}$$

da cui deriva che il tratto di linea BB'-CC' chiuso sul carico Z_u si presenta equivalentemente alla sezione BB' come una impedenza (Fig. 1.25):

$$Z_{BB'} = R_0 \frac{1 + \Gamma(\lambda/16)}{1 - \Gamma(\lambda/16)} = R_0 \frac{1 + \sqrt{2}/2}{1 - \sqrt{2}/2} = R_0 ROS \simeq 291.4 \,\Omega.$$

Quindi alla sezione BB' si potra' considerare il parallelo dell'impedenza concentrata $Z_1 = 57 + j182 \Omega$ e dell'impedenza $Z_{BB'} = 291.4 \Omega$ (Fig. 1.26), cioe'

$$Z_p = \frac{Z_1 Z_{BB'}}{Z_1 + Z_{BB'}} \simeq 100 + j100\,\Omega\,.$$

Per calcolare l'impedenza che la linea presenta alla sezione AA' si puo' procedere in modo analogo a quello gia' fatto per calcolare l'impedenza $Z_{BB'}$. Tuttavia risulta piu' conveniente ricordare che il valore che l'impedenza assume lungo la linea risulta essere una quantita' periodica con periodo $d = \lambda/2$. Poiche' la distanza tra le sezioni AA' e BB' e' appunto un multiplo di $\lambda/2$, alla sezione AA' si misurera' una impedenza pari a:

$$Z_{AA'} = Z_p = 100 + j100\,\Omega$$
.

Figura 1.25: Impedenza equivalente per il circuito a destra della sezione BB'.

Figura 1.26: Circuito equivalente a sinistra della sezione BB'.

Per il calcolo del rapporto d'onda stazionaria nel tratto di linea AA'-BB'necessita il modulo del coefficiente di riflessione in tale tratto

$$|\Gamma(z')| = \left|\frac{Z_p - R_0}{Z_p + R_0}\right| = \left|\frac{(100 + j100) - 50}{(100 + j100) + 50}\right| \simeq 0.62,$$

da cui

$$ROS_{AA'-BB'} = \frac{1+|\Gamma(0)|}{1-|\Gamma(0)|} = \frac{1+0.62}{1-0.62} \simeq 4.26$$

La potenza P_d dissipata complessivamente sui due carichi $Z_1 \in Z_u$ sara' pari alla potenza attiva che fluira' attraverso la sezione AA', in quanto, essendo la linea supposta priva di perdite, non esiste altra fonte di dissipazione. Tale potenza P_d dovra' quindi essere anche pari alla potenza dissipata dall'impedenza Z_p , che rappresenta equivalentemente la linea ed i carichi a destra della sezione BB'. Dalla conoscenza del modulo del coefficiente di riflessione nel tratto AA'-BB' essa risultera':

$$P_{d} = \mathcal{R}e\left\{\frac{1}{2}\frac{|V_{+}|^{2}}{R_{0}}\left[\left(1 - |\Gamma(z')|^{2}\right) + \left(\Gamma(z') - \Gamma^{*}(z')\right)\right]\right\} = \frac{1}{2}\frac{|V_{+}|^{2}}{R_{0}}\left[1 - |\Gamma(z')|^{2}\right] = \frac{1}{2}\frac{|V_{+}|^{2}}{50}\left[1 - |0.62|^{2}\right] \simeq 6.15|V_{+}|^{2} mW.$$

E' ora possibile esprimere tale potenza dissipata in funzione delle ammettenze Y_1 e $Y_{BB'}$ dei carichi e della tensione presente ai loro capi

$$P_{d} = \frac{1}{2} \mathcal{R}e \{Y_{1} + Y_{BB'}\} |V_{BB'}|^{2},$$

da cui

$$|V_{BB'}|^2 = \frac{2P_d}{\mathcal{R}e \{Y_1 + Y_{BB'}\}}.$$

La potenza dissipata su ciascun carico risultera':

$$P_{d_1} = \frac{1}{2} \mathcal{R}e \{Y_1\} |V_{BB'}|^2 = P_d \frac{\mathcal{R}e \{Y_1\}}{\mathcal{R}e \{Y_1 + Y_{BB'}\}},$$
$$P_{d_{BB'}} = \frac{1}{2} \mathcal{R}e \{Y_{BB'}\} |V_{BB'}|^2 = P_d \frac{\mathcal{R}e \{Y_{BB'}\}}{\mathcal{R}e \{Y_1 + Y_{BB'}\}}.$$

In particolare la potenza dissipata sul carico Z_1 risultera':

$$P_{d_1} = P_d \frac{\mathcal{R}e \{1/Z_1\}}{\mathcal{R}e \{1/Z_p\}} \simeq P_d \, 0.313 \,,$$

mentre quella dissipata nel tratto di linea a destra della sezione BB' sara' pari a

$$P_{d_{BB'}} = P_d \frac{\mathcal{R}e \{1/Z_{BB'}\}}{\mathcal{R}e \{1/Z_p\}} \simeq P_d \, 0.687 \, .$$

Poiche' la linea e' supposta priva di perdite tale potenza sara' anche quella dissipata sul carico Z_u .

Esercizio 1.5 Per la linea di trasmissione priva di perdite mostrata in Fig. 1.27 si determini il valore del rapporto d'onda stazionario e del coefficiente di riflessione di tensione alle sezioni AA' e BB'. Si dimensioni inoltre la resistenza concentrata R e la lunghezza d dello stub in corto circuito posto

Figura 1.27: Geometria del problema relativa all'esercizio 1.5.

in parallelo alla sezione CC' in modo da non avere onda riflessa a sinistra della sezione CC'. ($R_0 = 50 \Omega$, $v_f = 0.8 c$, $f_0 = 300 MHz$, $Z_u = 62.5 + j62.5 \Omega$, $\ell = 20 cm$).

Il coefficiente di riflessione di tensione sul carico risulta

$$\Gamma_{AA'} = \frac{Z_u - R_0}{Z_u + R_0} \simeq 0.495 \exp(j0.276\pi) \,,$$

mentre il rapporto di onda stazionaria nel tratto di linea compreso tra le sezioni $AA' \in BB'$ e' costante e pari a:

$$(ROS)_{AA'-BB'} = \frac{1+|\Gamma_{AA'}|}{1-|\Gamma_{AA'}|} \simeq 2.96$$

Dalla conoscenza della frequenza di lavoro e della velocita' di fase nella linea e' possibile calcolare il valore della lunghezza d'onda in guida:

$$\lambda = \frac{v_f}{f_0} = 0.8 \, m \, .$$

La distanza del carico Z_u dalla resistenza R puo' essere espressa in termini di tale lunghezza d'onda come:

$$\ell = \left(\frac{\ell}{\lambda}\right)\lambda = \frac{20\,cm}{80\,cm}\lambda = \lambda/4.$$

Ne segue che il coefficiente di riflessione di tensione alla sezione BB', cioe' a distanza $\lambda/4$ dal carico, risulta

$$\Gamma_{BB'} = \Gamma_{AA'} e^{-2j\beta\ell} = \Gamma_{AA'} e^{-2j\frac{2\pi}{\lambda}\frac{\lambda}{4}} = \Gamma_{AA'} e^{-j\pi} = -\Gamma_{AA'} \simeq 0.495 \exp(-j0.724\pi).$$

Per quanto riguarda l'impedenza equivalente che la linea chiusa sul carico Z_u presenta alla sezione BB', si ha:

$$Z_{BB'} = R_0 \frac{1 + \Gamma_{BB'}}{1 - \Gamma_{BB'}} = R_0 \left. \frac{Z_u + R_0 \tan(\beta z)}{R_0 + Z_u \tan(\beta z)} \right|_{z = \lambda/4} = \frac{R_0^2}{Z_u} = 20 - j20 \,\Omega \,.$$

Per non avere onda riflessa a sinistra della sezione CC' l'ammettenza Y_s derivante dalla serie tra la resistenza R e l'impedenza equivalente $Z_{BB'}$ dovra' avere parte reale pari alla conduttanza $G_0 = 1/R_0$ caratteristica della linea. Cosi' facendo e' possibile dimensionare opportunamente lo stub in corto circuito in modo tale che il parallelo tra l'ammettenza Y_s e lo stub risulti pari all'impedenza caratteristica R_0 della linea, e quindi non sia presente onda riflessa a sinistra della sezione CC'. Si ricorda che inserire lo stub, cioe' il tratto di linea in corto circuito, equivale a porre in parallelo alla linea una suscettanza B_s . Quindi

$$G_0 = \frac{1}{R_0} = \mathcal{R}e\left\{Y_s\right\} = \mathcal{R}e\left\{\frac{1}{Z_{BB'} + R}\right\} \quad \Rightarrow \quad \frac{1}{50} = \mathcal{R}e\left\{\frac{1}{20 - j20 + R}\right\}$$

$$\Rightarrow \quad R^2 - 10 R - 200 = 0.$$

Le soluzioni dell'equazione di secondo grado cosi' ottenuta risultano essere R = -10 e R = 20. Tuttavia la prima delle due soluzioni (cioe' R = -10) dovra' essere scartata in quanto non realizzabile fisicamente (si suppone infatti la resistenza R passiva). Per R = 20 la parte immaginaria jB dell'ammettenza Y_s assumera' il valore

$$jB = j\mathcal{I}m\left\{\frac{1}{Z_{BB'} + R}\right\} = j/100.$$

Quindi, per non avere onda riflessa, lo stub dovra' realizzare una suscettanza $B_s = -B = -0.01$.

Qualora si voglia costruire tale stub con uno spezzone di cavo della stessa linea chiuso in corto circuito esso dovra' risultare lungo:

$$jR_0\tan(\beta d) = \frac{1}{jB_s}$$

$$d = \frac{\arctan\left[\frac{-1}{B_s R_0}\right]}{\beta} = \frac{\lambda \arctan(2)}{2\pi} \simeq 0.176 \,\lambda = 14.1 \, cm \,.$$